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ABSTRACT

We describe some of the experimental knowledge-based software develop-
ment tools undez de-elopment at Kestrel Institute. In particular, systems
for automatically performing algorithm design, deductive inference, finite
differencing, and data structure selection are discussed. A detailed case
study is presented that shows how these systems could cooperate in sup-
porting the transformation of a formal specification into efficient code.
The example treated is a schedule optimization problem.

1 Introduction

The purpose of a programming environment is to enhance programming produc-
tivity. A comprehensive environment provides integrated tools that assist with all
aspects of the software development process: specification acquisition and develop-
ment, implementation, testing, integration, maintenance, project management, and
communication among the designers and users of the system. The Knowledge-Based
Software Assistant (KBSA) approach [13] advocated the building of a comprehensive,
integrated, software development environment that contained formalized knowledge
about each aspect of the programming process. In particular, it advocated the fol-
lowing design principles.
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1. The software development process should revolve around the development of for-
mal, very-high-level specifications from which efficient code is synthesized. The
specifications should be executable in order to allow testing. The maintenance
process should concentrate on evolving the specifications and resynthesizing
efficient implementations, rather than evolving the code.

2. All the objects relevant to the programming process, e.g. specifications at all
levels of refinement, derivations, test cases and results, project plans, bug re-
ports, should be captured in a knowledge-base.

3. There should be knowledge-based support for all facets of the programming
process, including automated implementation. Here, the term automated means
that the process is carried out by the machine, either automatically or under
human guidance.

Focusing the software process on the development of very-high-level specifications
factors the implementation of the problem from its specification. This should amelio-
rate the maintenance problem, because At is easier to maintain perspicuous, modular
specifications that lack the implementation detail of source code.

Automatic compilers for the specification language allow the designer to rapidly con-
struct executable prototypes of a specification. Experience gained with such pro-
totypes assures the designer that the specification is valid; i.e. that it specifies the
desired behavior in the context in which the system is embedded.

Kestrel research has focused on (1) the architecture of such an environment, and (2)
development of formal theories that can be used to support aspects of the software de-
velopment process. The architecture of an environment embodying the KBSA design
principles should be highly integrated; one where knowledge is explicit and manip-
ulable by the environment itself. The architecture of a self-described programming
environment was outlined in [27] (cf. 121]). We propose that a KBSA should contain
the following components.

I. A knowledge base manager that manages representations of all software process
objects, e.g. programs, including a representation of their abstract syntax an-
notated with dataflow and other assertions, derivation histories, mathematical
facts, program transformation rules, bug reports, project schedules.

2. A single wide-spectrum, very-high-level language used to (1) express programs
and specifications at all levels of refinement; (2) query and modify the environ-
ment's knowledge base; (3) express programming knowledge, such as program
transformations, efficiency characteristics, and other facts. Such a language
should integrate constructs from predicate calculus, set theory, and standard
imperative programming languages.
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3. A formal body of knowledge about the software development process. In par-
ticular, we propose that the implementation process be formalized as one of
program refinement by the application of a body of program transformation
rules. Implementation knowledge that is specific to an application domain is
necessary also (e.g. [3,39]). Other software development aspects that could be
formalized are performance estimation (e.g. 116]), version control (e.g. [28,26]),
designer communication (e.g. [17]), task scheduling and project management
(e.g. [25,6]).

The CIII system [36] developed at Kestrel was an approximation to this architecture.
It contained a frame-oriented knowledge base manager, a partly-compilable language
called V with a variety of constructs, and Eame theories that were codified in the
language. In particular, encoded in CHI were tireories for: generating data structure
implementations '9], which mil be mentioned again later;, synthesizing database up-
dates (14]; and automating the comrnunication amoag designers [17]. The V language
contained a transformation construct that wvkas used to exvpress program transforma-
tions.

The REFINE' system [1] is a comnmertialty aa"iable envixonment, based on the ar-
chitectural ideas in the cm syste=L It cantains an entity-attribute style database
manager, accessed via the REIKiE ianguage. W'e k.•ve de-veloped research proto-
types using the REFINE enviwonment that dtmonstrate a•,rithm design [35], logic
compilation [38], program optimization D5]., pezformance etmfnation 110], and project
management, task schedilJng, bug trarking, amd versiim catrol [15].

This paper concentrates w. specifitation i•mplernentation knowledge. We show how
to derive an efficient implenvtation of a w-zy-high-iew, specification of a scheduling
problem. We show the use of the specificati•s language, and how various kinds of im-
plementation knowledge come into play in the derivatioiD Before the actual derivation
is presented, two pieces of implemeniation knowledge wM be described: the algorithm
design tactic for subspace !generators 133] as applied to optimization problems, and
the finite-differencing program optinmizatica technique Implementation knowledge
for data structure generatmin and performance estimatim will be mentioned briefly

Underlying our approach is the goal of an automatic programming system that needs
little human guidance. This has been exemplified by our work in algorithm de-
sign. We have tried to explicate the structure of various classes of algorithms such
as branch-and-bound and divide-and-conquer. Systems we have built can construct
automatically (for the most part) these sorts of algorithms for a given problem spec-
ification. One feature of our approach is that our algorithm design tactics motivate
the inferences and decision-making that have to be made to synthesize an algorithm.
In contrast, work such as [8,23,37] is more concerned with correct, human-developed
proofs and program derivations. In our approach, certain kinds of intermediate re-
suits (lemmas, equivalent expressions, lower bounds, etc.) are sought because general

'REFINE is a trademark of Reasoning Systems, Inc., Palo Alto, California.
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knowledge about the type of algorithm being constructed allows them to be formally
characterized. An inference system can then take the formal characterization and
produce the desired result. Inference is only performed in highly constrained con-
texts and towards specific goals. This allows the tactics to work automatically. See
[7,11,24] for surveys of approaches to specification implementation.

The specification/programming language used in this paper is loosely based on the
REFINETM language. Specifications in this paper should be comprehensible because of
the similarity of the language to standard programming and mathematical notation.
A few notes are in order. The language contains the standard datatypes integer,
natno (natural number) and the following datatype constructors.

seq(r) sequences of elements of type r
set(r) sets of elements of type r
bag(r) multisets of elements of type r
binrel(rl, r2) binary relations on rl x r2

71 _+ 72 mappings from r, to r2

Examples of the sequence operations concat, append, prepend, and reduce follow:
concat([1,2], [3,41) = [1,2,3,41; append([1,2),3) = [1,2,3]; prepend([1, 2], O) = [0, 1,2];
reduce(+, [1, 2,31)= 1 +2+3=6. The expression elements-of(S) returns the elements
in the sequence S as a bag. The standard operations on sets are provided, e.g. E,
U, {f(x) I P(x)}. Mappings may be defined using A-expressions. The function
minirnum(f,S) returns some element of the set S that minimizes the function f.
The form assert P in E announces that the assertion P holds upon entry to the
expression E. Such an assertion suggests that E may be simplified because it occurs
in a context where P holds.

This paper suggests, but cannot prove, the contention that such an environment will
improve productivity. Our experience with the REFINE language and environment,
and the experience of others with other very-high-level language-based environments,
such as SETL [201, lend credence to such a contention.

2 Knowledge about Specification Implementation

We now introduce some techniques for designing algorithms and optimizing programs.
These techniques are formal and automatable and are embodied in several imple-
mented systems at Kestrel. The techniques require deductive inference only in a
carefully controlled way called directed inference, which is also described.
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2.1 Search and Optimization Algorithm Design Strategies

Many problems may be posed as search problems: given some input parameters Y
over an input domain D (i.e. X E D holds), find an object z that satisfies 0(F, z).
where 0 is a given predicate called the goal constraint. Each such z satisfying the
goal constraint is called a feasible solution to the search problem. The generate-and-
test algorithm strategy is the most general kind of algorithm for solving such a search
problem. It assumes that the sought-after object lies in a domain R, called the solution
space, that can be enumerated. The so-called "British-Museum" generate-and-test
algorithm simply enumerates each item z in R, returning a z for which 0(i, z).

The goal of an optimization problem is to find a solution that is feasible, but, moreover.
optimal, in some sense, over all the feasible solutions. The generate-and-test algorithm
scheme can be applied to solve an optimization problem also: one enumerates all the
feasible solutions searching for an optimal one.

A refinement of the British Museum algorithm strategy, called subspace generato,,.
searches more efficiently by exploiting characteristics of the goal constraint 0 and the
solution space R. To motivate this strategy, consider the problem of searching for
a particular Early Greek statue in the British museum (given that we have lost our
museum guide). The search can be made more efficient by exploiting the structure
of the museum, that is, as a set of galleries. Information about a gallery may help to
eliminate each object in the gallery as a possibility. For example, every object in a
gallery labeled "Coins and Medals" can be eliminated a priori.

More formally, the subspace generator algorithm scheme requires that each of the
following program items be synthesized.

1. a function Initial-Subspace(S) that returns the initial solution space to be searched:

2. a function Split(Y, ý) that, given a subspace ÷, returns a set {÷1,. .. , ,,} of
smaller, disjoint subspaces;

3. an efficient necessary condition •(bF, ) that will serve to filter out those sub-
spaces ÷ that cannot contain a feasible solution;

4. a function for extracting an answer from a subspace. For example, if we have
determined that the statue must be in gallery 409, then if we know that gallery
409 has only one object in it, we can easily close in on the statue in the gallery.

Once synthesized, these program items may be inserted into slots in an algorithm
template, producing a program that provably solves the original problem.

We briefly show how a familiar problem can be solved by applying the subspace

generator strategy. The problem is: given an element x and an ordered sequence S,



find the index i at which x is located in S, i.e. S(i) = z. The initial solution space for
this problem are the indices in the interval [1.. size(S)].

Each algorithm design strategies requires a library of supplementary methods. The
subspace generator scheme requires methods for splitting a subspace of some particu-
lar datatype into subspaces. Several splitting functions are available for the data type
of intervals. One way of subdividing an interval into subintervals is singleton-spit:
the interval [f.. u) (where a - I > 1) is divided into the intervals [1] and [(P + 1)..U1.
Another is split-in-half: the interval [I.. u] is split into [I.. L. l and [L'lu-2 ] .. u.
Because the given sequence S is ordered, there is an efficient necessary condition.
described in the next section, for deciding whether a given subinterval [L.. u] could
possibly contain an index i for which S(i) = x. Once the splitting process divides
the solution space into an interval of length 1, we can test whether the sole member
of the interval is the desired index. The splitting function, necessary condition, etc.
can be inserted into the subspace generator algorithm template to produce a search
algorithm.

One critical item in synthesizing the subspace generator is the synthesis of the efficient
necessary condition 4) where

V X-1 4E(-,i())]. (1)

The justification for this condition is that if 4) fails on some subspace descriptor f, i.e.
-4ý(Y, ÷) holds, then by the contrapositive of (1) there are no feasible solutions in ÷
and hence the entire subspace ÷ can be safely eliminated from further consideration.

Branch-and-bound algorithms that find optimal solutions, not just feasible ones, can
be constructed using the subspace generator scheme. A subspace ÷ can be eliminated
if it can be shown that every solution in the subspace has cost worse than that
achieved by a solution that has already been found. The necessary condition is thus
of the form lb(i) < ub, where ub is the cost of the best solution found so far, and
lb is a function that can ampute, given a subspace ÷, a lower bound on the cost of
solutions in ý.

Necessary conditions and awer bound functions can be synthesized by applications
of directed inference, described next.

2.2 Directed Inference

Directed inference generalhes the standard notions of theorem-proving and formula
simplification. Given some assumptions A over variables Y, and a source formula F,
the goal is to find a formulla € that (1) satisfies some syntactic constraints, e.g. its
free variables " are a subset of a given set; (2) optimizes some cost function, e.g. in
terms of syntactic simplicity and semantic strength 2; and (3) that bears a specified

2A predicate p(z) is sironger than q(r)-conversely, q(z) is weaker than p(x)-if p is more re-
strictive than q, i.e. Vz [p(z) =- 9()],
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logical relationship e.g. ==, .=, , to F. For example, we might want to reason
forward (==>) from F to find a consequent 0 whose free variables are a subset -7 of .i
satisfying

V F [A(i) = (F(i) = ) (2)

In other words, we try to find a necessary condition 0 on F under assumptions A(fl).

Similarly, given A(Y) and a source expression e(i), we might want to find another
expression 0(y-) that satisfies some syntactic constraints and satisfies some comparison
relation, e.g. C, >, =, C, with e. For example, a lower bound 0 for e over variables •
satisfies: V _A:) = > e(F a(y-)]. (3)

In the context of directed inference, the logical relationship (=•.,..) or the com-
parison relation (<,...) specifies the direction of the inference. For any particular
direction, there is a tension between syntactic simplicity and semantic strength of the
desired formula. For example, true is the simplest necessary condition for a given F,
but is too weak; similarly, F itself is as strong as possible, but it isn't any simpler
than F. We have developed an inference engine called RAINBOW [32] that finds for-
mulas and expressions optimizing a heuristic measure of simplicity and strength. For
algorithm design purposes, one seeks an expression that optimizes execution efficiency
and semantic strength. Fortunately, syntactic simplicity and execution efficiency are
correlated in the examples that follow.

In general we specify an inference as follows:

Assumptions A1, A2, ... , A,,
Source S
Inference-direction
Target-constraints varset _ {.C.. A ...
Cost-function syntactic simplicity +

The target-constraints express conditions on the sfntactic form of the desirable in-
ferred term or formula T. The keyword varset denotes the set of free variables in T
which we may want to restrict to a certain subset.

The problem of finding the efficient 4P in (1) can be specified as follows.

Assumptions A(Y)
Source 3 z [z E f A O(X-,z)]
Inference-direction ==*
Target-constraints varset C {1X, i}
Cost-function syntactic simplicity + semantic strength

For example, in the array search problem above, the goal is to find an efficient test
O(x, I, u, S) satisfying:
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Assumptions sorted(S)
Source 3i [i E It..uI A S(i)0=z
Inference-direction =#-
Target-constraints varset C {x, l, u, S}
Cost-function syntactic simplicity + semantic strength

Our system derives the formula S(1) < x < S(u). Incorporating this test and split-in-
half into the subspace generator template yields the binary search algorithm. This
algorithm requires time O(log(size(S))), whereas a naive generate-and-test algorithm
requires time O(size(S)).

2.3 Program Optimization and Finite Differencing

An expensive computation E(i) on dependent variables i can be simplified by tak-
ing advantage of context Context here means the invariant assertions that can be
assumed to hold at some point in a program, and the values that have b en com-
puted and saved. In these cases, the directed inference system can be instructed to
find a more efficient, specialized expression that is equal to E(f), given the context
assumptions. The role of context in optimization, and specialization transformations
that make use of context, have been studied in [29].

For example, if the expression E contains a subexpression that has already been (or
could be) computed and bound to a variable, then a common-subexpression elimina-
tion transformation allows the variable to be used in place of the subexpression in E.
More formally, the expression f(y") in H(Ei(f(9-,i),E 2 (f(y),Y2)) can be lambda
abstracted, resulting in let z = f(") in H(Ei(z, X-1), E 2(z, ' 2)).

A similar optimization opportunity arises if y is only an incremental modification of
X, ald E(., ' Las already bcern calculated. In this case, it is often possible to calculate
E(y) given x, y, and E(x) more efficiently than it is to calculate E(y) just given y. An
instance of this opportunity that is exploited in conventional compilers is the strength
reduction optimization. One example of this optimization transforms a multiplication
by a constant e.g. E(y) = cy, where y = x + 1 and E(x) has already been calculated,
to an addition of the constant, i.e. E(y) = E(x) + c. Another example, this time on
the sequence datatype, transforms the calculation size(y), where y = append(x, a), for
some element a, and where size(x) has already been calculated, into the calculation
size(y) = size(z) + 1. Notice the latter transformation has changed a linear time
computation to one of constant time. In general, for an incremental update U(x), we
try to transform E(U(x)) into the computation Eu(x, E(z)), for some efficient EU.

Function abstraction isolates the body of a function f(xi,.. . , xJ) from the context
set up in the functions that call it. In a purely applicative setting, the context that
an expression E(xl,... , X,) is exposed to within a function f is determined solely
by the bindings of f's parameters and the bindings of local variables. However,
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there is a transformation that cam. expose £E w the v,,text of the functions that
call f. This transformation adds a me-% pararrimfeT. say c, to f's parameter list (now
f(x•.... , ,, c)). The new parametm c will be mniL.ained equal to E. Any function g
that contains a call to f, say the call is f(U 1 ,...,U,,), must now supply E(xl,.. .. x,):
i.e., the call must be changed to g(U 1,...,U, ,E(U1 ,..., U,,)). We also assert within
f that c=E(xi,...,x,1 ). Now that the expression E has been exposed to the context
set up in g, it may be possible to simplify it. This transformation could be expressed
as a composition of unfold, abstract, simplify, and fold steps as in [291.

A particularly important case of this transformation is when f calls itself, and
U1 ,... , Un, are incremental modifications to z, .... , x,. In this case, application of
the transformation results in exposing the E computation to a context containing the
value of the E computation on similar vahles. Such finitc difftr'encing optimizations
122] can achieve significant space and time savings when they occur within loops or re-
cursion, because some efficiency is gained each time f is called. The finite differencing
optimization relies on algebraic properties of E -ad the incremental modifications.
We use directed inference to express (in the single variable case) E(U(x)) equivalently
as Eu(x, E(x)). The finite-differencing program transformation scheme used in this
paper is illustrated informally below. It shows how the definitions for functions f and
g would be changed.

g(y)= -- g(y)=

f(V) f(V, E(V))

f ()= (xc)=
assert c = E(x) in

E(-) c

f(U(x)) f(U(x), Eu(x, c))

Similar finite-differencing transfrm-nations expressed using second-order patterns have
been given in [2].

The IMEQ system at Kestrel [51 performs finite differencing transformations in an
imperative setting. The optimization scheme we employ in this paper simplifies ex-
pensive expressions within recursive functions, as described above. We are working
to develop tools that automatically locate the -expensive, incrementally computable
expressions. At present, the programmer indicates the expressions to be maintained.

Often, the expression Eh that incrementally computes the next value has itself some
expensive operations that must be themselves• maintained. Parameters holding these



intermediate computations are also added to the recursive function and maintained.

Some expressions do not at first appear to be incrementally computable, but can
be rewritten :.- equivalent, incrementally computable expressions 1221. For example,
a standar,' .echnique for incrementally maintaining the expression VX [P(x)J is to
reforr--" ate it equivalently as size({x I P(x)}) = 0. That is, the expression that
is true if every x satisfies P(ar) is reformulated as the expression that is true only
when the number of elements for which -'P(x) is zero. The number of elements x for
which -"P(x) can more often be incrementally maintained than the original quantified
expression.

After the program has been transformed to maintain intermediate expressions inl
parameters, it often turns out that some of the dependencies of expressions on other.s
have been removed. Thus, some of the variables may be unused, or dead, hence they
may be dropped from the parameter lists of the function. The variables that are dead
can be detected by data flow analysis [22].

2.4 Data Structures

Another step in the algorithm design process is the development of representations
for each of the abstract data types in the algorithm. Compilers typically provide a
standard implementation representation for each type in their programming language.
However as the level of the language rises, and higher-level data types. such as sets.
sequences, and mappings, are included in the language, or as users specify their own
abstract data types, standard representations cease being satisfactory. The difficulty
is that the higher-level datatypes can be implemented in many different ways: e.g.
sets may be implemented as lists, arrays, trees, etc. Depending on the mix of opera-
tions, their relative frequency of invocation, and size information, one implementation
may be much better than another. Thus no single default implementation will give
good performance for all specifications containing the abstract type. Work on data
structure generation and selection for very-high-level languages attempts to deal with
these problems [31,4].

Kotik's DSS system [9,19] can generate for a given very-high-level data type a large
space of possible alternative representations expressed in terms of standard high level
datatypes; e.g. integers, arrays, records. These alternative representations are gen-
erated by composing together small, well known datatype conversions (cf. 1181). For
example, a set of elements may be represented as a sequence of those elements (re-
peated or not), or a set may be represented as a characteristic mapping; a mapping
may be represented as a set of pairs, or as the composition of two other mappings;
a sequence may be represented as a mapping from indices to the elements, or as a
list. The DSS system was able to construct a representation such as hash table whose
buckets are lists for the set datatype, just by composing these well-known conversions.
Once some representation has been chosen, the program can be transformed into one
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using the standard datatypes.

Recent work [10] has extended DSS rules so that their applicability conditions take
into account performance considerations. The representation decisions depend on the
operations performed on it and their frequency of occurrence. For example, the main
sequence operations in the searching program above are assigning the sequence, and
accessing a random element-the latter being repeated many times. This suggests an
array implementation, because random access takes constant time. [30] shows how a
sequence may be implemented as a stack, and hence as an array with a pointer to
the top, if only certain oi the sequence operations are used, and subsequences are not
referenced. This applies to our derivation, as discussed in Section 3.6. The subject
of copy elimination, e.g. how to decide whether parameters need not be copied when
passed. or whether certain actions can be performed in-place, has been discussed
in [12]. We are refining a theory that guides the DSS system, but do not have a
comprehensive theory as yet.

3 Example: Scheduling Jobs with Deadlines on a
Single Processor

We illustrate the concepts and systems discussed above by stepping through the
derivation of an optimization algorithm. All of the steps in this derivation are
correctness-preserving so that the final code is guaranteed to correctly solve the
problem described by the initial specification. Furthermore most of the program-
ming knowledge used in the derivation is understood well enough that the steps are
formally motivated. We believe that this derivation could be produced with very little
guidance from a human developer. Most of the derivation steps can be performed by
research systems currently running at Kestrel Institute.

3.1 Specification

Suppose that we wish to schedule a set of jobs on a processor subject to some con-
straints on the order in which jobs can run. Further suppose that each job completes
in unit time, that each job has a deadline, and that we wish to minimize the number
of jobs that fail to complete before their deadlines. If we define a schedule to be an
ordering of a given set of jobs that satisfies some given constraints, then this is an
optimization problem where the feasible space is the set of schedules, and the cost
function is the number of jobs in a schedule that fail to complete before their deadline.

Formally, the feasible space of schedules can be specified as follows.

11



SCHEDULES(Jobs: set(JOB), Precedes: binrel(JOB, JOB)): set(seq(JOB)) =

{S S E seq(Jobs) A elements-of(S) = Jobs A
* Vi,,i 2 E Jobs[Precedes(j,,j 2 ) : indez(S,j 1 ) < index(Sj 2)J}

Here Jobs is the set of jobs that we wish to schedule. The variable Precedes is a
binary relation over Jobs and is assumed to be a partial order. The feasible space

* SCHEDULES(Jobs, Prccedes) is defined to be the set of all sequences S of Jobs
whose elements (a multiset) are exactly Jobs and such that the ordering of jobs in S
is consistent with the Precedes relation. Following is a specification of the optimal
scheduling problem, called SWD (Scheduling With Deadlines).

• SWD(Jobs : set(JOB), Precedes : binrel(JOB, JOB),
Deadline :JOB -- natno) : seq(JOB) =

minimum(C, SCHEDULES(Jobs, Precedes))

• The cost function C is

C(Jobs, Precedes, Deadline, S) = size(f{j I i E Jobs A Deadline(j) < indez(S,j)}).

The input Deadline is a mapping from jobs to deadline times (represented as natural
numbers).

3.2 Development Strategy

As discussed earlier the oerall development strategy is to retrieve from a library a
standard subspace generator for the output domain of SWD (sequences over a finite
domain), then to specialize it so that only feasible solutions (schedules) are gener-
ated, and then to further specialize it so that only optimal solutions are generated.
Interleaved with this specialization activity are code optimization steps. We conclude
with some consideration of the design and representation of data structures in the
generator.

3.3 Algorithm Design

The first step is to select a standard subspace generator that can enumerate a superset
of the feasible space SCHEDULES(Jobs, Precedes). We select a generator S(D) tor
sequences over type D that works as follows (see also Figure 1): Each subspace
is described by a sequence (called ps here, an abbreviation of "partial schedule")
denoting the maximal common prefix of sequences in the subspace. Clearly the empty
sequence describes the whole type seq(D) and thus it is the descriptor for the root
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I•d.. d1] [d,, ý

Figure 1: Subspace generator tree for sequences over {dl, d2, ... , d}

node (of the subspace tree). A descriptor ps is split into descriptors of subspaces by
appending a single element. For example, if we want to enumerate sequences over
f{0, 1,2} then the subspace descriptor [2,1], which denotes all sequences beginning
with a 2 followed by a 1, is split into the descriptors [2,1,01, [2, 1, 11, and [2,1,2].

This generator is specialized by incorporating some of the constraints of SCHEDULES
into the subspace splitting operation. This is done by developing a test that can
determine that a subspace descriptor cannot describe any feasible solutions. More
precisely we derive a necessary condition of

3 S [S extends ps
A elements-of (S) =Jobs
A Vil,j 2 E Jobs[Precedes(jl,j2) =• index(Sjj) < index(S,j2 A)]

over the variables {Jobs, Precedes, Deadline, ps}. In words, we derive a necessary
condition on the existence of an extension S to subspace descriptor ps that is feasible,
i.e., an extension that has all the jobs of Jobs and no ordering constraint is violated.
A derivation such as that in Figure 2 results in the filter 0(ps):

13



S extends ps S =concat(ps, qs)

0 elements-of(S) = Jobs "•, elements-of (concat(ps, qs)) = Jobs

elements-of (ps) 1 elements-of(qs) = Jobs

elements-of(ps) C Jobs elements-of (qs) = Jobs - elements-of(ps)

Vj 1,j 2 E Jobs [ Precedes(ji,.j2 ) ,' indez(S,jI) < index(S,j 2 )]

] case analysis

Vj 1 ,j 2 [Ji E elements-of (ps) A j 2 E elements-of(ps) A Precedes(j 1 ,j 2 )
= index(S, ji) < index(SJ2)]

&

Vj1 ,j 2 [ji E Jobs - elements-of (ps) A j 2 E elements-of (ps) ==. -"Precedes(ji,j2)]

Figure 2: Deriving a filter via forward inference

elements-of(ps) C Jobs A

Vj 1 ,j 2 jJl E elements-of(ps) A j 2 E elements-of (ps) A Precedes(jI,j2)
=> index(S,ji) < index(S,j 2)] A

* Vj 1 ,j 2 [ji E Jobs - elements-of(ps) A j2 E elements-of (ps) ==* -Pirecedes(ji,j 2)]

With this filter we have the first version of our target algorithm, shown in Figure 3.
This gives us the rough structure of the target algorithm. Before proceeding there is
a simple but powerful simplification that we can perform. Notice that the filter 'b(ps)

* holds invariantly on entry to the recursive function SCHEDULESI.1aux(ps), yet the
straightforward implementation of SCHEDULESI-aux(ps) would test
4(append(ps, a)). We set up the directed inference task of simplifying •(append(ps, a))
under the assumption of 4(ps) (see Figure 4) with the result 4(ps, a):

* Vj E Jobs - elements-of (ps) [-,Precedes(j, a)] A a E Jobs - elements-of (ps).

14



SCHEDULESI (Jobs, Precedes, Deadline)=
ifiP([ ]) then SCHEDULESI aux([ 1)

SCHEDULESI-aux(ps)=
assert 4 (ps) in
if size(ps) = size(Jobs)

then {ps}
else U SCHEDULES] -aux(append(ps, a))

a E Jobs A
'Z(append(ps, a))

Figure 3: Subspace Generator for SCHEDULES - Initial Version

Inference-direction 4=: (logical equivalence)
Assume *(ps) A a E Jobs

0 Source t(append(ps, a))

1. elements-of(append(ps, a)) c- Jobs

4 (elements-of(ps) + a) C Jobs

4=ý' a E (Jobs - elements-of(ps))

2. case analysis results in true

3. case analysis results in Vj E Jobs - elements-of (ps) [-hPrecedes(j, a)]

Figure 4: Simplification of 4Z(append(ps, a))
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SCHEDULES2( Jobs, Precedes, Deadline)=
SCHEDULES2_aux([ ])

SCHEDULES2-aux(ps)=
assert t(ps) in
if size(ps) = size(Jobs)

then {ps}
else U SCHEDULES2-aux(append(ps. )

a E Jobs - elements-of(ps)
Vj E Jobs - elements-of (ps) [-"Precedes(j, a)]

Figure 5: Simplified Generator for SCHEDULES

Using 0(ps, a) in place of 40(append(ps, a)) results in a large savings of time per recur-
sive call. This optimization is related to finite differencing since we are incrementally
maintaining an invariant relation 4, but different in that the invariant does not in-
volve initializing and updating a data structure. The simplified generator appears in
Figure 5.

3.4 Finite Differencing Optimization

We now apply finite differencing in order to further refine and optimize SCHEDULES2.
Note that the loop in the recursion involves enumerating over the set

{a I a E Jobs - elements-of(ps) A Vj E Jobs - elements-of(ps)[-,Precedes(j, a)]}.

We wish to reduce the complexity of computing this set by creating some intermediate
data structures and maintaining their values incrementally. We can pull out from this
expression the following invariants to maintain:

Free.set = Jobs - elements-of (ps)
Test =Aa.Vj E Free-set(ps)[-,Precedes(j, a)]

Min.set = {a I a E Free-set A Test(a)}

As mentioned in Section 2.3, the Test expression may be maintained by reformulating
it in an equivalent, incrementally computable form. In this case we replace Test by

size({j I j E Free.set(ps) A Precedes(j, a)}) = 0.

16



*A SCHEDULES3(Jobs, Precedes, Deadline).=
SCHEDULES3_aux([], ps.Size-init, Free..set.init,

Prec-rnap.init, Size-map-init, Min.set-init)

SCHEDULES3-aux(ps, ps.size, Free.set, Prec.map, Size-map, Min.set)=
• assert 4 (ps) A ps.size = size(ps)

A Free-set = Jobs - elements-of(ps)
A Prec-map= Aa.{j I j E Free-set A Precedes(j, a)}
A Size-map = Aa.size(Prec-map(a))
A Min-set = {a I a E Free-set A Size-map(a) = 0} in

* if ps...size = size(Jobs)
then {ps}
else reduce(U, {SCHEDULES3.aux(append(ps, a), A-ps.size,

AFree-set, APrec.map,
ASize.map, AMin.set)

* a E Min..set})

Figure 6: SCHEDULES plus Finite Differencing Structure

The resulting set of data invariants to maintain, called ý(ps), is

ps..size =size(ps)
Free.set =Jobs - elements-of(ps)
Prec-map = Aa.{ j I E Free-set A Precedes(j, a)}
Size-map = Aa.size(Precrn'ap(a))
Min-set = {a I a E Free-set A Size.map(a) = 0}

9 The challenge is to maintain these invariants under change to the parameter ps in
SCHEDULES2_aux (they also depend on Jobs and Precedes but these are fixed
parameters and so we treat them as constants). In a recursive setting we must
add each of the above variables as new parameters to the recursive function. In
effect they become part of the local state of the recursive computations. Figure 6
shows schematically the structural changes induced by our attempt to maintain the
invariants C(ps). This figure is schematic in that it only indicates where initialization
and update code is positioned and not how it is achieved.

The directed inference involved in deriving the initialization and update code for the
invariant ps.size=size(ps) is simple. When ps is initialized to [I (the empty sequence),
then the value of ps-size is 0. To derive the update code we perform equality-
preserving inference on the source term size(append(ps, a)) under the assumption
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ps-size = size(ps), resulting in the derived term ps-size + 1. Analogous derivations
for the initialization and update code for the invariant

0 Size-map = Ab.size(Prec-map(b))

are given in Figure 7.

Incorporating all of the initialization and update code results in the refinement of
SCHEDULES3 to SCHEDULES4 in Figure 8. Note however that in SCHEDULES4
we can eliminate a number of dead, or unused, variables and their corresponding
update code. The result is SCHEDULES5 in Figure 9, an efficient generator of
feasible objects.

3.5 Incorporating the Cost Function

We now further specialize the generator so that it only enumerates optimal cost
objects, as described in Section 2.1. Generally the technique is analogous to that
used for constraining the generator to enumerate only feasible solutions: we derived
a necessary condition on the existence of feasible objects in a subspace. We derive a
necessary condition on the existence of optimal solutions. In 134] we show that several
common pruning techniques such as lower bound pruning and dominance relations
can be derived in this way. Here we focus on the derivation of a lower bound function
for SWD and how it can be used to improve the search process of SCHEDULES. In
particular we derive a lower bound on the cost function

size({j Ij E Jobs A Deadline(j) < indez(S,j)}).

The derivation in Figure 10 results in a bound that is the sum of (1) the number of
jobs in the partial schedule ps that have already missed their deadlines and (2) the
number of jobs not in ps that have already missed their deadlines (i.e. their deadline
lies between 1 and size(ps)). Another term which we have derived manually (but not
presented in the figure) would measure the number of jobs j not yet in ps that could
not possibly meet their deadline (because too many predecessors must be executed
before j's earliest possible execution time). This additional term would improve the
bound and thus improve performance of Lhe search procedure. The lower bound
function can be maintained incrementally just as we've done for 41(ps) and the finite
differencing variables. The initialization and update code are derived in Figure 11.

Exploiting the lower bound function gives us a classic branch-and-bound algorithm.
It records the best schedule found so far in the search process and its cost ub, and
deletes from consideration any subspace whose lower bound is not less than ub. To
use the lower bound function incrementally we must again add a new parameter to
the parameter list of the recursive function in SCHEDULES. In addition we convert
to iterative form so that we can more easily maintain global variables that record the
least cost solution found so far and its cost (see Figure 12).

18
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Size-.map = Ab.size({j I i E Jobs - elernents-of (ps) A Precedes(.j,b)))

Initialization Ps 4

Assume
Source Xb.size({j I i E Jobs - elements-of([J) A Precedes(J, 6)1)

=Ab.size({j I i E Jobs A Precedes(j, b)))

Increment ps +- append(ps,a)

0 Assume Prec-map = Ab.{)j I i E Free-.set A Precedes(j, b)},
A~Prec-nap = Ab.(if Precedes(a, b)

then Prec-nap(b) - a
else Prec-map(b)),

Size-map = Ab.size(Precexnap(b))
0 ~Source Ab4size (LXPrec-mxap)

=Ab.size(if Precedes(a, 6)
then Prec-map(b) - a
else Prec...map(b))

=Ab.(if Precedes(a, b)
then size (Prec..map(b) - a)
else size (Prec-.map(b))

0 ~=)b.(if Precedes(a, b)
then Size-.map(b) - I
else Size-.map(b))

Figure 7: Incremental Maintenance of Size-map
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SCHEDULES4 (Jobs, Precedes, Deadline)=
let ps-size = 0

let Free.set = Jobs
let Prec.map = Ab.{j I j E free.set A Precedes(j, b)}

let Size-map = Ab.size(Prec.rmap(b))
let Min.set = {a I a E free-set A Size.inap(u) = 0}

SCHEDULES4_aux([ ], ps..size, Free set,
Prec.map, Size-map, Min-set)

SCHED ULES4_aux(ps, ps.size, Free-set, Precimap, Size-map, MAin.-set)=
assert I(ps) A ý(ps) in
ii p-_size = size(Jobs)

then {ps}
else reduce (U, {SCHEDULES4_aux( append(ps, a),

ps-size + 1,
free-set - a,
A b. (if Precedes(a, b)

then Prec-map(b) - a
else Prec-map(b)),

A b.(if Precedes(a, b)
then Size-map(b) - I
else Size.map(b)),

(Min-set U {b I Precedes(a, b) A Size-map(b)= 1})- a)
a E Min-set})

Figure 8: SCHEDULES with Finite Differencing
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SCHELI, LES5(Jobs, Precedes, Deadline)=
let ps.size = 0

let Size.map = Ab.size({j I J E Jobs A Precedes(j, b)})
let Min-set = {a I a E free-set A Size-map(a) = 0}

SCHEDULES5_aux([ I,ps-size, Size-map, Min-set)

SCHED ULES5_aux(ps, ps-size, Size-map, Min.-set )=
assert 4)(ps) A 1(ps) in
if ps-size = size(Jobs)

then {ps}
0 else reduce(U, {SCHEDULES5_aux(append(ps, a), ps.size + 1,

A b. (if Precedes(a, b)
then Size.map(b) - 1
else Size-map(b)),

(Min-set U {b I Precedes(a, b) A Size.map(b) = 1)) - o)
* a E Min-set})

Figure 9: SCHEDULES with dead variables removed

Another reason for converting to iterative form is to make the recursive calls into
explicit data structures; this allows us to more flexibly specify control strategies. The
data structure PQ is specified as an abstract data type known as a priority queue (or
agenda). Generally priority queues represent sets of objects with associated priorities.
The operations include Init.PQ which creates an empty queue, Insert which adds
an object to the queue and assigns it a priority, and Select which extracts that object
in the queue with highest priority. Priority queues can bo- used for controlling search
processes by letting the objects be representations of tasks and letting the priority of
a task reflect the desired search strategy. For example, to achieve a best-first search,
the priority on a task should be the value of the lower bound function. Breadth-first
and depth-first search can be achieved by basing the priority of a subspace on its
depth in the search tree. At this point we leave the specification of the priority open.

3.6 Data Structure Representation

The next step in the design process is to develop representations for each of the
abstract data types in the algorithm. The representation decisions for a variable
depend on the operations performed on it and their frequency of occurence. Consider
the subspace descriptor ps which denotes a partial schedule:
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6 ~Inference- direction >
Target- characteristics varset C I Jobs, Pr"ecedes , Deadline, ps}
Assume S ext e nds ps

A S = concat(ps, qs)

0 ~A elements-of ks) = Jobs
A -(ps) A ý(ps)

Source size({j I E Jobs A Deadline(j) < index(S,j)})

size({j I j E Jobs A Deadline(j) < index(S,j)})

10 ~ =size({j Ij E elements-of(S) A Deadline(j) < index(S,j)1)
I =size({j I j E elements-of(concal(ps, qs)) A Deadline(j) < index(S, j)))

=size({j I(j E elements-of(ps) V j E elements-of(qs)) A Deadline(j) < indexc';.r(Sj*))
=size({j I j E elements-of(ps) A Deadline(j) < index(S,j)}

U {j I i elements-of (qs) A Deadline(j) < index(S, j)}1)
=size({j Ij E elements-of(ps) A Deadline(j) < index(S,j)})

+Size({j I E Jobs - elements-of(ps) A Deadline(j) < index(S,j)}))
> size({j I E elements-of (ps) A DeadlzrteQ) < index(S, j) 1)

-4size({j I i E Jobs - elements-of(ps) A Deadline(j) :5 size(ps)}1))

I Figure 10: Deriving the Lower Bound Function
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p

I

lb(ps) = size({j I J E elements-of (ps) A Deadline(j) < inder(S,j)})

Initialize: ps 0- []

Source lb([ 1)
=size({j I J E elements-of( )) A...1)

=0

Increment: ps +- append(ps,a)

Inference-direction =
Assume lb(ps) = size({j I j E elements-of(ps) A Deadline(j) < indez(ps,j)})
Source size({j I i E elements-of(append(ps,a)) A Deadline(j) < indez(append(p,, i. ji

size({j I l E elements-of (append(ps, a)) A Deadline(j) < indez(append(ps, o1.j}

=size({j I i E elements-of (ps) A Deadline(j) < indez(ps,j)})
+size({j I j = a A Deadline(j) < index(appernd(ps, a),j) })

=lb(ps) + (if Deadline(a) < size(ps) + I then 1 else 0)

Figure 11: Incremental maintenance of the lower bound function
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SWD6(Jobs, Precedes, Deadline)=
let solution: seq(JOB) = [],

lb: natno = 0,
ub: natno = maxint,
Job.size : natno = size(Jobs),
ps : seq(Jobs)=f[,
ps-size : natno = 0,
Size-map: (Jobs --+ natno) = Ab. size({j I J E Jobs A Precedes(j, b)1)

let Min-set : set(JOB) = {a I a E Jobs A Size-map(a) 0),
PQ: PriorityQueue(seq(JOB) x natno x (Jobs -- natno) x set(JOB) x natio!

Init.PQ;
Insert(PQ, (ps,ps-.size, Size-map, Min-.set, lb));
while nonempty(PQ) do

begin
(ps, ps-size, Size-map, Min..set, lb) +- Select(PQ);
if lb < ub then

if ps-size = Joblsize
then % record best solution and cost found so far

solution +- ps; ub +- lb;
else enumerate a E Min-set do

Insert(PQ, (append(ps, a),
ps.size + 1,
Ab.(if Precedes(a, b)

then Size-map(b) - I
else Size..map(b)),

(Min-set U {b Precedes(a, b) A Size-map(b)= 1}) -a,

lb + (if Deadline(a) < ps-size then 1 else 0)))
end;

solution
end.

Figure 12: SWD - Iterative Optimization Version
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Figure 13: A Structure-Sharing Representation of Sequences

Operation Frequency

ps - [] once
append(ps, a) often
solution +- ps occasionally

A standard representation for sequences is linked lists; however, this representation
is expensive for ps because it entails copying ps every time the append operation is
performed. A better representation is shown in Figure 13 where alternative versions

of ps coexist and share common structure. The data structure ps is simply a pointer
to the last element of the sequence. In this representation, initialization and append
take constant time, and the assignment operation takes time linear in the size of ps
(by tracing upwards from the element pointed to by ps).

This representation is the composition of two data type conversions: that a sequence
may be represented as the reverse of another sequence, and that a sequence may
be represented as a linked list. The facts that motivate this representation are that
(1) prepending an element onto a sequence does not require copying the sequence
(provided that random modifications to the sequence are not performed), and (2)
appending an element onto a sequence is equivalent to prepending the element onto
the reverse of the sequence (provided that the reversed sequence is reversed again
when the value of it is desired). An analogous structure-sharing representation can
be used on the mapping variable Size-map.
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On the other hand, if a depth-first strategy is chosen, then ps is accessed in a stack
manner, with no pointers to subsequences, so can be implemented as an array with

*1 a top pointer. We thus see that the context of use of a data object affects the choice
of a representation for the data object.

* 4 Concluding Remarks

We have formally developed specification SWD into algorithm SWD6. The initial
specification was a concise and straightforward definition of the problem: optimal

* scheduling of jobs on a processor under precedence constraints and deadlines. It
has essentially no algorithmic content. The derived algorithm is much longer and
more difficult to understand, yet is guaranteed to be correct with respect to the
specification.

The development process produced a series of increasingly efficient versions of the
algorithm. The initial specification SWD was uncompilable using conventional tech-
niques. The initial subspace generator searched a tree with 0(n") nodes and spent
0(n4) time per node (where n denotes the number of jobs to be scheduled). Introduc-
ing the filter 4 and simplifying it reduced the number of nodes searched to between

* 0(n) and 0(n!) depending on the strength of the precedence relation Precedes, and
reduced the time spent per node to 0(n 2). Finite differencing optimizations sub-
stantially reduced the constant associated with the time spent per node. Introducing
the lower bound function and its incremental computation substantially reduced the
number of nodes searched although it is difficult to quantify the effect. Finally the in-
troduction of specialized data representations for the data structures of the algorithm
further reduced the time spent per node to between 0(n) and 0(n log n) depending
again on the strength of Precedes. Since the nodes can be processed independentl3
further improvements could be made by transforming the algorithm for execution in
a parallel environement.

Experimental systems under development at Kestrel can currently support most of
the capability needed to perform the derivation of SWD6. The directed inferences in
this paper are easily handled by the RAINBOV. II inference system. The CYPRESS
II algorithm design system has semiautomatically produced subspace generators for
several problems, but does not yet support the optimization structure described above
(e.g. lerivation and use of the lower bound function). The MEQ (51 finite differencing
system has produced the initialization and update code described in our example, al-
though in a slightly different format. MEQ allows programmers to specify constraints
of the form = E and it combines analysis, table lookup, and composition to obtain
maintenance code for c with respect to modifications to parts of E. Initialization and
update code are automatically added to the program during compilation. The DSS
system t19] and extensions [10] allow limited transformational development of repre-
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sentations for VHL data structurcs based on performance criteria. Some of the data
structure representations discussed above would require extensions to this system.

* The REFINETM language is well-suited for expressing the initial specification SWD.
Its compiler can produce executable code from the intermediate forms, although they
would be relatively inefficient. The final derived algorithm would be compiled into
efficient COMMON LisP code.

We have not yet attempted to integrate all of thme systems and develop a uniform
interface to the programmer. Some of the substant*ia difficulties with integration and
interiace include:

* Explanation - Why was that decdsion made? What decisions have been made

so far? ýV¥hat methods are available for achieving goal G7

* Assistance - What can I do now? What shomM I do nox'

* Assessment - How well am I doing? Which decision is better?

* Instruction - You (the computer) '¢hould know -.

* Exploration - What if I do this?
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